If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12.5x^2-60x+12.5=0
a = 12.5; b = -60; c = +12.5;
Δ = b2-4ac
Δ = -602-4·12.5·12.5
Δ = 2975
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2975}=\sqrt{25*119}=\sqrt{25}*\sqrt{119}=5\sqrt{119}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-60)-5\sqrt{119}}{2*12.5}=\frac{60-5\sqrt{119}}{25} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-60)+5\sqrt{119}}{2*12.5}=\frac{60+5\sqrt{119}}{25} $
| (x-2)^2-5(x-2)=6=0 | | 2(18z+6)-1=8(z-1) | | 7x/12=6+x/8 | | 53t+7=-333-32t | | 16+4*m=8 | | 2x+45=55 | | X/6=x/7-5 | | 3x/4-7/2=21/8 | | 5/7-3x=236/7 | | 9(x+4)=2+9x | | 3p-84=-4p | | 15-x=2(x+3 | | |2a+4|=|3a-1| | | 3t+5=4-6t | | -2x-10=-5x+42 | | |t-4|-5=0 | | 2(2-x)=200 | | 9^x-3^(x+2)+8=0 | | 2x+20x=96 | | 9^x-3^(x+2)+8=0 | | -5m+3=28 | | 20=-4-6a | | A+6a=7 | | 8(2t+1)=4(7t=7) | | 10,5x^2-60x+10,5=0 | | 72-7x+3=6x+7 | | 2(2+x)=200 | | 81^x/3=9^x+1 | | 3/4x+3=21 | | x+1/3-1/2=2x+1/5 | | 0=-n+6n | | 6x-(12x/3)=-3 |